Structure of ice surface: evidence for the existence of amorphous and non microporous ice

C. Manca, C. Martin and P. Roubin
Laboratoire Physique des Interactions Ioniques et Moléculaires UMR 6633
Université de Provence, Centre St Jérôme, Case 242, 13397 MARSEILLE cedex 20, France

Problem
- Measurement of high specific surface area (A)
- Measurement of low heat of adsorption (∆Q): anomalously low if there is a pore confinement effect
- Does large specific surface prove microporosity?
 - Re-investigation of adsorption isotherm studies:
 - Comparison of amorphous (Ia) and crystalline (Ic) ices
 - Comparison of various adsorbates
 - Use of infrared co-measurements to check modifications in ice structure

Experimental conditions

Ice formation
- H₂O:Ar (1:30) gas mixture sprayed into the cell at 40 K
- Sample slowly annealed (0.2 K min⁻¹) to 90 K at which ice is expected to be amorphous

Adsorbates

<table>
<thead>
<tr>
<th>Adsorbates</th>
<th>N₂</th>
<th>CO</th>
<th>CH₄</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Å)</td>
<td>3.4</td>
<td>3.7</td>
<td>4.2</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Ice sample characterization

- IR spectrum typical of that of amorphous ice
- Type II isotherms in agreement with other studies
 - Similar values of A: 100-300 m².g⁻¹
 - Similar values of ∆Q: 2.5 kJ.mol⁻¹
- Analogous physical properties for our samples and for those obtained directly by water vapor deposition

Ice sample annealing

- T>110 K: decrease in A and νdH
 - Surface re-arrangement before crystallization
- T>150 K: A(Ic) = 15 % A(Ia)
 - no more νdH signal
 - Less dH bonds for Ic than for Ia

Conclusions

- N₂ is not suitable to probe porosity
- Evidence for the existence of amorphous and non microporous ice
 - Model of grain assembly (size < 65nm)?
- Open surface favours molecular mobility, diffusion and reactions
 - Importance for the understanding of interstellar reaction mechanisms?