COMPETITION BETWEEN PROTON AND H-ATOM TRANSFER IN GREEN FLUORESCENT PROTEINS

Carine Manca

Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland

cole polytechnique fédérale de Zurich itecnico federale di Zurigo

Introduction

The Green Fluorescent Proteins (GFP) have been found in numerous bioluminescent organisms, like the jellyfish Aequorea victoria and the sea pansy Renilla reniformis [1, 2]. They can be used as fluorescent marker in cell biology and therefore, many studies are devoted to understand their complex photochemistry. The chromophore responsible for the green fluorescence (8phydroxybenzilidene-imidazolinone) is involved in a hydrogen bonded wire composed of a water molecule hydrogen-bonded to a serine residue (Ser205) that finally connects to a glutamate residue (Glu222).

The GFP exhibits two absorption maxima at ~ 395 and 475 nm which correspond to the neutral and anionic forms of the chromophore, respectively [3]. The second absorption is the experimental proof of the tautomerization of the chromophore via proton transfer along the wire. Nevertheless, recently, analog to the 7-hydroxyquinoline $(NH_3)_3$ system [5, 6], Vendrell *et. al.* [7] have shown that H-atom transfer occurs between the GFP chromophore and the water molecule in the C_s symmetry arising from a $\pi\pi^*-\pi\sigma^*$ state crossing (CASSCF) calculations).

• The $\pi\pi^* - \pi\sigma^*$ crossing is an intrinsic property of the chromophore itself \Rightarrow dissociation when stretching the O-H bond.

• This model chemistry is capable to qualitatively reproduce the CASSCF results from ref. [7]. • Increasing the hydrogen bonded wire length does not prevent the $\pi\pi * \pi\sigma * \text{ crossing}$ (no proton) transfer), but the cluster dissociation (analog to $7HQ \cdot (NH_3)_3$).

Questions arising

- Does the GFP chromophore exhibit the same behavior as 7hydroxyquinoline (i. e. $\pi\pi^* - \pi\sigma^*$ state crossing) when involved in a H-bonded wire (see below)?
- Could a $\pi\pi^* \pi\sigma^*$ state crossing be predicted with a computational 'low cost' method and an appropriate basis set?
- Does the environment of the chromophore play a role in the stabilization of the $\pi\sigma^*$ state ?

The $\pi\pi^*$ - $\pi\sigma^*$ state crossing

The optically dark $\pi\sigma^*$ state [4]: the $\pi\sigma^*$ state crosses the $\pi\pi^*$ excited state along the O-H / N-H stretching coordinate \Rightarrow new type of photochemical reaction pathway.

Potential energy profiles of S_0 , $\pi\pi^*$ and $\pi\sigma^*$ states of (a) phenol, (b) indole, and (c) pyrrole.

Multistep H Atom transfer in 7- $Hydroxyquinoline(NH_3)_3$ [5, 6]: The hydrogen bonded wire connecting back to the 7-hydroxyqinoline prevents the cluster dissociation or relaxation to the ground state and leads to successive H atom transfer \Rightarrow no excited proton transfer.

Schematic path for the System C

Calculations

- CIS/6-31G(d,p) with diffuse functions on H atoms involved in H bonds
- Newton paths: The distance between the transferring H⁺/H and the donor O is constrained at different values; the remaining coordinates are optimized.
- Simplification of the system: Ser205 modelled by methanol, Glu222 modelled by acetate

- all the stationary points are offset so that the enol $\pi\pi^*$ excitation matches the experimental value ($\simeq 400$ nm).
- The HT1 form in its lowest singlet excited state $(\pi\sigma^*)$ is not allowed to fluoresce
- Back-crossing during the second step of the reaction (transfer from H_3O to Ser205): the reaction is now a proton transfer and the PT2 in its lowest singlet excited state $(\pi\pi^*)$ is allowed to fluoresce

Effect of the environment

The optimized $\pi\pi^*$ and the $\pi\sigma^*$ states of the HT1 intermediate for several systems.

References

- [1] Davenport, D.; Nicol, J. A. Proc. R. Soc. London Ser. B **1995**, 144, 399.
- [2] Morin, J. G.; Hasting, J. W. J. Cell. Physiol. 1971, 77, 313.
- [3] Zimmer, M. Chem. Rev. 2002, 102, 759 (and citations therein).
- [4] Sobolewski, A. L.; Domcke, W.; Dedonder-Lardeux, C.; Jouvet, C. PCCP 2002, 4, 1093 (and citations therein).
- [5] Tanner, C.; Manca, C.; Leutwyler, S. Science **2003**, 302, 1738.
- [6] Manca, C.; Tanner, C.; Leutwyler, S. Int. Rev. Phys. Chem. 2005, 24, 457 (and citations therein).
- [7] Vendrell, O.; Gelabert, R.; Moreno, M.; Luch, J. M. J. Am. Chem. Soc. 2006, 128, 3564.

- Increasing the H bond wire (System $B \rightarrow System C$) has low effect on the energy in its lowest singlet excited state $\pi\sigma^* - \pi\sigma^*$ energy difference
- Further solvation on the chromophore itself (System $C \rightarrow$ System D) stabilizes the $\pi\pi^*$ state and can prevent the $\pi\sigma^* - \pi\sigma^*$ state crossing \Rightarrow competition between H atom- and Proton-transfer reactions.

Conclusion

• CIS calculations with an appropriate basis set can qualitatively reproduce the $\pi\pi^*$ - $\pi\sigma^*$ state crossing; their "low cost" allows the comparison with larger systems and the study of solvation effect on the chromophore • System A: $\pi\sigma^*$ state crosses the S_0 state for larger O-H distances • System C: back crossing $\pi\sigma^* - \pi\pi^* \Rightarrow PT2$ is allowed to fluoresce. • solvation effect: competition between H-Atom- and Proton transfer only when the chromophore itself is more solvated